
Ginzburg–Landau theory beyond the linear-chain approximation: the 2D case

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 9273

(http://iopscience.iop.org/0953-8984/18/40/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 14:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) 9273–9286 doi:10.1088/0953-8984/18/40/012

Ginzburg–Landau theory beyond the linear-chain
approximation: the 2D case

Victor Bârsan
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Abstract
Within the Ginzburg–Landau theory applied to a planar array of chains,
characterized by a real order parameter, the inter-chain fluctuations are taken
into account exactly. So, the ‘linear chain approximation’ is replaced by a
rigorous treatment. The single-chain problem is addressed taking advantage
of a precise and simple non-perturbative solution of the Schrödinger equation
for the anharmonic oscillator.

1. Introduction

The Ginzburg–Landau (GL) theory was initially proposed in the frame of superconductivity (for
a modern discussion, see for instance [1]), but was subsequently applied to a huge variety of
systems and phase transitions, from Peierls transitions in quasi-one-dimensional systems [2] to
rheological properties of self-assembling fluids [3] or tweed-like stripe modulation in magnetic
materials [4].

Following a simple phenomenological approach introduced by Landau (see for
instance [5]), a free energy functional is constructed by expanding the free energy density in
powers of the order parameter ψ and its spatial gradient. The order parameter is a field with n
components. For n = 1, ψ is real, and the GL functional may describe a solid–solid structural
transformation [6, 7], in particular a martensitic transformation [8], or the phases of complex
fluids, like a ternary mixture of oil, water and amphiphile [9]. For n = 2, ψ is complex,
describing superconductivity, superfluidity, metal–insulator transitions, etc. For n = 3, ψ may
describe magnetic systems, etc.

As GL theory is mainly an approach to critical phenomena, its success depends essentially
on how the fluctuations are taken into consideration. A mean-field treatment predicts incorrect
results, like an unphysical phase transition in one-dimensional (1D) systems, or incorrect
temperature dependence of the order parameter. However, the fluctuations can be properly
treated by taking into account all order-parameter configurations with a weight given by the
Boltzmann factor, exp{−βF[ψ]}. For example, the partition function is given by a functional
integral of exp{−βF[ψ]} over all possible ψ(x).
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The main technical problem of this approach is that the functional integrals could be very
difficult to evaluate. One of the most successful mathematical treatments is the transfer matrix
technique [10], that allows one to reduce the functional integral in n dimensions to a quantum
mechanical problem in n − 1 dimensions. More exactly, this ‘quantum mechanical problem’
consists in the evaluation of the energy spectrum of a so-called ‘transfer matrix Hamiltonian’.
For a 1D system, described by a ψ4 functional (see below), the ‘matrix transfer Hamiltonian’
is a one-particle anharmonic (quartic) oscillator Hamiltonian.

So, the statistical mechanics of such a 1D system is described by the energy spectrum
(mainly, by the ground state energy) of an anharmonic oscillator. The first to take advantage
of this analogy and to use this fact in order to develop a detailed description of 1D systems
were Scalapino et al [11]. Although the fluctuations are treated correctly, even in this 1D case,
the final result is not ‘exact’ (as generally claimed), as long as the energy spectrum of the
anharmonic oscillator cannot be obtained exactly.

The theory was extended to the study of quasi-1D materials (planar or spatial arrays
of weakly coupled chains), within the so-called ‘linear chain approximation’. It treats the
correlations along the chain exactly, while introducing inter-chain coupling via effective fields.
This ‘linear chain approximation’ provided a method of incorporating the 3D effects in the
‘exact’ 1D solution. A necessary condition of its validity is the strong anisotropy of the system:
the intra-chain interactions must be much larger than the inter-chain ones.

Let us outline the main results of this approach. Applying the Scalapino–Sears–Ferell
theory [11] to higher dimensions, Stoeckly and Scalapino [12] studied a planar array of
weakly coupled chains. They reduced the functional integration to the evaluation of the energy
spectrum (essentially, to the first two levels) of the transfer-matrix Hamiltonian, describing,
in this case, a chain of weakly coupled anharmonic oscillators. This eigenvalue problem was
solved in the case of strong anisotropy, associating with this Hamiltonian a fermionic bilinear
Hamiltonian, that can be solved exactly. Similar systems—planar arrays of weakly coupled
chains—were transformed, by similar methods and under similar assumptions, into a pseudo-
spin Hamiltonian, or into an Ising chain in transverse field, by Dietrich [13] and Lajzerovicz
and Pfeuty [14], respectively.

The 2D and 3D problems were also addressed by Scalapino et al [15]. Using a mean-
field approximation, the coupled chain problem is reduced to that of a single chain in an
effective field. The physical systems under examination were Ising, classical Heisenberg, real
and complex ψ4 chains. A quite similar extension of the description of 1D behaviour to very
anisotropic 2D and 3D systems was given by Bishop and Krumhansl [6]. They restricted
their work to the structural phase transitions, but also gave a detailed analysis of the ‘strong
anisotropy’ approximation, called sometimes the ‘two-level approximation’.

More recently, McKenzie [16] re-examined some fundamental aspects of the GL theory in
quasi-1D systems, for a complex order parameter. The author emphasizes that the accurate
description of the commonly studied CDW materials cannot be achieved without an exact
treatment of the inter-chain fluctuations (see conclusions, point (3)).

In spite of some differences existing between the results of the aforementioned theories for
a real or complex order parameter ψ , it is clear that the weaknesses of all these approaches have
two sources, at the ‘intra-chain’ and at the ‘extra-chain’ level. The ‘intra-chain’ errors are due
to the lack of an exact solution of the ‘transfer matrix Hamiltonian’. In almost all interesting
cases, it corresponds to a quartic anharmonic oscillator. The ‘inter-chain’ errors are due to a
mean-field treatment of fluctuations. Smaller errors correspond to higher anisotropy.

In the present paper, we shall avoid these difficulties as follows. The ‘intra-chain errors’
can be minimized taking advantage of the significant progress in understanding the anharmonic
oscillator, reflected in a vast literature produced after the publication of the main contributions
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of Scalapino and his co-workers, just mentioned in the preceding paragraphs. In the last two
decades, several precise (but however approximate) expressions for the ground state energy
of the anharmonic oscillator have been proposed. Out of these, we have chosen in the
present paper the Hsue–Chern approach, which is, at the same time, analytically simple and
mathematically accurate. The ‘inter-chain errors’ will be eliminated using a Green’s function
method, allowing an exact determination of the thermodynamic potentials. No anisotropy
restriction is imposed.

In order to illustrate our approach as clearly as possible, we have chosen the simplest
relevant physical system: a planar array of chains, characterized by a real order parameter. In
this way, we have replaced the ‘linear chain approximation’ with an exact treatment. The errors
in the solution of the 2D system are entirely produced by the approximate character of the
anharmonic oscillator eigenvalues. These errors can be controlled and minimized. The paper
is mainly intended to introduce a new method rather than to produce new results.

The outline of the paper is as follows. In section 2, we define the Ginzburg–Landau
functional and briefly describe the transfer matrix method. The mean-field results of the GL
theory are also mentioned. In section 3, we adapt to our problem an operator approach (due
to Hsue and Chern) in order to study the anharmonic oscillator; in this way, a precise and
analytically simple expression for the ground state energy is obtained. In section 4, these results
are used to calculate the thermodynamics of the 1D chain. In section 5, the transfer matrix
method is applied to a 2D system—a planar array of chains. The transfer matrix Hamiltonian
obtained in this way describes a chain of coupled anharmonic oscillators. Its ground state
energy is calculated exactly, using a Green’s function method, and the thermodynamics of the
physical system can be obtained rigorously. The specific heat has a logarithmic singularity at
the transition point, showing an Ising-like behaviour of the 2D system. The final section is
devoted to conclusions and comments.

2. The Ginzburg–Landau functional and the transfer matrix equation

Let us consider a 1D system, characterized by a real order parameter ψ(x). The simplest form
of the GL functional (called sometimes the ψ4 functional) is

F (1D)[ψ] =
∫ L

0

dx

ξ0

[
aψ2 + bψ4 + c

(
dψ

dx

)2
]
. (1)

The only relevant temperature dependence is contained in the coefficient a:

a = a′(t − 1), t = T

Tc
, a′ > 0 (2)

where the ‘mean field transition temperature’ Tc does not correspond to any real phase
transition. The parameters b, c are positive, and ξ0 = (

c
a′
)1/2

is a temperature-independent
coherence length.

The expression of the coefficients a, b, c can be obtained from a microscopic analysis [17].
Let us recall the most important results of the mean field theory for the GL functional. If

ψ is position independent, the minimum of F (1D) is achieved for

ψMF =
{
(−a/2b)1/2 = (a′/2b)1/2

√
1 − t, t < 1

0, t > 1.
(3)
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So, the critical index of the order parameter has the value 1
2 . The free energy is

F (1D) =
⎧⎨
⎩

− a2

4b

L

ξ0
= a′

4b

L

ξ0
(1 − t)2, t < 1

0, t > 1.
(4)

The specific heat has a jump

�CV = La′2

2ξ0bTc
. (5)

A fractional measure of the temperature width of the critical region is the parameter

�t = 2

(
b

βca′2

)2/3

,
1

βc
= kBTc. (6)

The mean field solutions are only approximate, predicting, for instance, an incorrect
ψ(t) dependence. As Scalapino et al have shown [11], this difficulty is generated by the
inappropriate treatment of fluctuations near Tc, rather than by the form of the functional (1), and
can be overcame using a functional integral approach. According to [11], the thermodynamics
of the system described by (1) is given by the partition function, evaluated as a path integral:

Z =
∫

e−βF (1D)[ψ] Dψ. (7)

The transfer matrix theory allows one to write Z as

Z =
∑

n

exp

(
−β L

ξ0
εn

)
, β = 1

kBT
(8)

where εn are the eigenvalues of the anharmonic oscillator Hamiltonian (1D transfer matrix
Hamiltonian)

H (1D)
TM = −1

4

ξ 2
0

β2c

∂2

∂ψ2
+ aψ2 + bψ4. (9)

In the thermodynamic limit, only the smallest eigenvalue, ε(1D)
0 , is important:

f (1D) = −kBT

L
ln Z = ε

(1D)
0

ξ0
. (10)

So, the thermodynamics of (1) can be easily evaluated, if we know the spectrum of the
anharmonic oscillator (9).

3. The anharmonic oscillator: Hsue–Chern approach

The anharmonic oscillator is ‘a long standing difficult problem’ [18]. Understanding its
properties is however vital to many physical domains, e.g. thermal expansion, phonon
softening, field theory. The failure of the Rayleigh–Schrödinger (RS) perturbation method,
demonstrated in the classical paper of Bender and Wu [19], pushed the development of more
subtle approaches: path integral perturbation theory [20], supersymmetric quantum mechanics
based methods [21], analytic methods generating exact solutions for specific potentials (quasi-
exactly soluble systems) [22–25], the ‘two-step approach’ [26], etc.

The ‘two-step procedure’, proposed by Hsue and Chern [26], has the advantage of being,
at the same time, simple and accurate. This approach offers a basis for the RS perturbation
series, which is important, because the RS series for the energy of the anharmonic oscillator,
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formed using the harmonic basis, is divergent. We shall outline here the Hsue–Chern method
and we shall adapt it to our problem, (9).

Let us consider the Hamiltonian:

H = 1
2 p2 + 1

2 x2 + λx4, λ > 0. (11)

In the second quantization language, it takes the form:

H = 1

2
+ α+α + λ

4
(α + α+)4. (12)

If |0〉 is the ground state of (12), the state vector |
〉 defined by

|
〉 = e
θ
2 (α

+)2 |0〉 (13)

has the property

α|
〉 = θα+|
〉. (14)

So, it is natural to define new boson operators, γ, γ+:

γ = α − θα+
√

1 − θ2
, (15)

which are annihilation and creation operators for the new vacuum |
〉. The parameter θ is
determined from the minimization of the ‘ground state’ energy, E0(θ) :

E0(θ) = 〈
|H|
〉
〈
|
〉 . (16)

Reversing (15)

α = γ + θγ+
√

1 − θ2
(17)

and using the identity [26]

(γ + γ+)4 = :(γ + γ+)4 : +6 : (γ + γ+)2 : +3

(the columns means normal ordering), the Hamiltonian (11) becomes

H = E0 +
[

θ

1 − θ2
+ 3λ

2

(
1 + θ

1 − θ

)2
]
(γ 2 + (γ+)2)

+
[

1 + θ2

1 − θ2
+ 3λ

(
1 + θ

1 − θ

)2
]
γ+γ + λ

4

(
1 + θ

1 − θ

)2

: (γ + γ+)4 : . (18)

The ground state energy E0 of (18) can be written in the new variable

ω = 1 − θ

1 + θ
(19)

as

E0 = 3ω2 + 1

8ω
, (20)

ω being also the (only) real root of the equation:

−ω3 + ω + 6λ = 0. (21)

In order to adapt the HC method to the transfer matrix Hamiltonian (9), let us write it in a
more suitable form:

H (1D)
TM = ξ0

βc

√ |a|
c
H(1D)

TM (22)
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where

H(1D)
TM = −1

2

d2

dϕ2
− 1

2
εϕ2 + λϕ4 (23)

and

ε = sgn(1 − t), λ = b

4βca′2 |t − 1|−3/2 (24)

ε = 1 (ε = −1), or t < 1 (t > 1), corresponds to the subcritical (supercritical) regime.
Following the Hsue–Chern approach, we get for the ground state energy of H(1D)

TM

E0 = 3ω2 − ε

8ω
(25)

with ω the real root of the equation:

−ω3 + εω + 6λ = 0. (26)

With (24)–(26), it is easy to obtain compact analytical formulae for thermodynamic
quantities. As our interest is focused on the critical region, we shall give only the corresponding
series expansions, near ‘the critical point’.

For the ground state of the Hamiltonians H(1D)
TM , (23), we get

ET M
0 = (6λ)1/3

8

{
3 − 2ε(6λ)−2/3 − 1

3
(6λ)−4/3 − 2ε

33
(6λ)−2

− 1

34
(6λ)−8/3 + 2

37
(6λ)−4 + · · ·

}
(27)

and for the ground state energy of (9)

ε
(1D)
0 = 3

8

(
3

2

)1/3

kBTc

(
�t

2

)1/2
{

1 +
(

2

3

)5/3

τ − 1

32

(
2

3

)4/3

τ 2 + 1

33

(
2

3

)3

τ 3

− 1

35

(
2

3

)8/3

τ 4 + 25

312
τ 6 + · · ·

}
(28)

where the ‘scaled temperature’ τ is

τ = 2(t − 1)

�t
. (29)

This is the starting point in the study of the thermodynamic properties of the 1D system
described by the GL functional (1). For the computation of some averages, for instance the
mean value of the order parameter, an expression for ε(1D)

0 in which ξ0, a, b, c are independent
parameters, is useful:

ε
(1D)
0 = 1

8

ξ0

βc
(Ac)−1/2

×
{

3 + 2Aa − 1

3
(Aa)2 + 2

27
(Aa)3 − 1

81
(Aa)4 + 2

37
(Aa)6 + · · ·

}
; (30)

A = 2

3

βcc1/2

ξ0b
. (31)

According to [26], this method allows the computation of the ground state energy with an
error less than 2%, for any value of λ.
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Figure 1. ‘Scaled specific heat’ cV , equation (35), as a function of the ‘scaled temperature’ τ .

4. The thermodynamic properties of the 1D system

As indicated in section 2, we can evaluate the free energy per unit length, f (1D) = ε
(1D)
0 /ξ0 (10),

using expression (28) for the ground state energy ε(1D)
0 . The specific heat of the length unit is

cV = −T
∂2 f

∂T 2
= −

(
2

�t

)2 1

ξ0Tc

(
1 + 1

2
τ�t

)
d2ε

(1D)
0

dτ 2
. (32)

Using the jump of the specific heat (per length unit) predicted by the mean field theory (5),

�CV

L
= �cV = kB

2ξ0

(
2

�t

)3/2

(33)

we can define a ‘scaled specific heat’, cV ,

cV = 9
cV

�cV
(34)

which retains only the relevant temperature dependence:

cV =
(

1 + 1

2
τ�t

){
1 − 22

32

(
3

2

)1/3

τ + 22

33

(
2

3

)1/3

τ 2 − 24 × 5

38

(
3

2

)1/3

τ 4 + · · ·
}
. (35)

For small values of �t (�t � 0.1), equation (35) describes a peak of the specific heat (see
figure 1). It is similar to the specific heat anomaly ([27] (figure 19)) observed in TTF-TCNQ
or in other quasi-1D materials ([28] (figure 2)). In TTF-TCNQ, the anomaly is significant
in a temperature range �T/Tc of about 0.1 [27]. A similar behaviour of the specific heat is
predicted by molecular dynamics results [30].

For the expectation value of ψ2, we find, with (30),

〈ψ2〉 = ∂ε
(1D)
0

∂a
= 1

4

ξ0

βc

√
A

c

×
{

1 − 1

3

(
2

3

)2/3

τ + 2

33

(
2

3

)1/3

τ 2 − 23

36
τ 3 + 24

39

(
2

3

)1/3

τ 5 + · · ·
}
. (36)
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Figure 2. Expectation value of ‘scaled field’ intensity 〈ψ2〉, equation (38), versus ‘scaled
temperature’ τ .

We shall use the mean field value (3)

〈ψ2
MF〉 = a′

2b
= ψ2

MF(t = 0)

in order to define a ‘scaled order parameter’ or ‘scaled field’ ψ through the relation

〈ψ2〉 =
(

3

2

)1/3 4

�t

〈ψ2〉
〈ψ2

MF〉
. (37)

We get for the expectation value of the scaled field intensity ψ
2

〈ψ2〉 = 1 − 1

3

(
2

3

)2/3

τ + 2

33

(
2

3

)1/3

τ 2 − 23

36
τ 3 + 24

39

(
2

3

)1/3

τ 5 + · · · (38)

(see figure 2). Figure 2 is specially relevant for the phenomenon which is produced in a 1D
material: instead of a neat phase transition, there is a smooth passage from a regime in which
the order parameter is significantly nonzero and is growing with the lowering of temperature
to a regime in which it is very small and becomes smaller for larger temperatures [11]. The
agreement with the ‘exact results’ of Scalapino et al is very good (see [11] (figure 3); see
also [29] (figure 3)). Of course, the results predicted by (35) and (38) cannot be taken into
consideration too far away from the origin.

5. The coupled chain problem

The planar array of chains was studied by Lajzerowicz and Pfeuty [14], Dietrich [13], Stoeckly
and Scalapino [12], and Scalapino et al [15], in the frame of the ‘linear chain approximation’,
i.e. treating the inter-chain interaction in the mean-field approximation. Using molecular
dynamics methods, Kerr and Bishop [30] studied a rectangular 2D lattice with interparticle
interactions that are very different in strength along the two lattice directions; it may describe
a system of weakly coupled chains with strong interaction within each chain. It is, also, a
2D, one-component order parameter model. All such models are in the same universality class
(Ising) and have the same critical exponents, independent of anisotropy. In this section, we
shall give an exact solution for the 2D coupled chain problem.
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We shall study here the coupled chain problem using the GL theory. Let us consider
a planar array of chains of length L, each of them characterized by a real order parameter
ψ j (x), j = 1, . . . , N , and by a free energy functional given by (1). The free energy of the
whole system is

F (2D)[ψ] =
N∑

j=1

∫ L

0

dx

ξ0

{
aψ2

j + bψ4
j + c

(
dψ j

dx

)2

+ c⊥(ψ j+1 − ψ j )
2

}
(39)

where cyclic boundary conditions have been imposed:

ψN+1 = ψ1. (40)

In general, one considers that the coupling between chains is small,

c⊥ � c

ξ 2
0

(41)

with ξ0 as before. The coefficients a, b, c have the same significance as in section 2. With the
transfer matrix method, one obtains the following associated Hamiltonian:

H (2D)
TM =

N∑
j=1

{
− 1

2m

∂2

∂ψ2
j

+ aψ2
j + bψ4

j + c⊥(ψ j+1 − ψ j )
2

}
(42)

where

m = 2β2c

ξ 2
0

. (43)

In the thermodynamic limit, the free energy per unit length of the coupled chains is, essentially,
the ground state energy of the transfer Hamiltonian H (2D)

TM , (42):

f (2D) = ε
(2D)
0

ξ0
. (44)

So, the 2D statistical mechanics problem is reduced to a 1D quantum mechanics problem
of N coupled anharmonic oscillators. By finding its ground state energy, we shall give, at the
same time, a rigorous derivation of the free energy of the coupled chain problem, for a real
order parameter, without any use of a restriction like (41).

Let us remark that (42) can be written as

H (2D)
TM =

(
2a

m

)1/2

H(2D)
TM (45)

where

H(2D)
TM =

N∑
j=1

{
−1

2

∂2

∂ϕ2
j

+ 1

2
ϕ2

j + λϕ4
j − μϕ j+1ϕ j

}
(46)

with

a = a′ (t − 1)+ 2c⊥, λ = mb

(2ma)3/2
, μ = 2c⊥

a
. (47)

Because we are not only interested in the regime t ∼ 1, we shall maintain the temperature
dependence of the ‘mass’ (43).

We shall compute the ground state energy of H(2D)
TM , (46), following closely a Green’s

function approach described in [31]. Let

Gi j(ξ, t) = −i〈T ϕ̃i(ξ, t)ϕ̃ j (ξ, 0)〉 (48)
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where

ϕ̃i (ξ, t) = eiHξ tϕi e
−iHξ t (49)

Hξ = H0 + ξHint (50)

H0 =
N∑

j=1

{
−1

2

∂2

∂ϕ2
j

+ 1

2
ϕ2

j + λϕ4
j

}
(51)

Hint = 1
2

∑
Di jϕiϕ j (52)

Di j = −μ(δi, j+1 + δi, j−1). (53)

The shift of the ground state energy of Hξ , (50), compared to the c⊥ = 0 case, is ([31]
(equation (1.4.10)))

�EG = lim
t→0+

i

2

∑
i= j

Di j

∫ 1

0
dξ Gi j(ξ, t). (54)

Gi j(ξ, t) may be evaluated using the Dyson equation:

Gi j(ξ, t) = G0(t)δi j +
∫ ∞

−∞
dt ′ G0(t − t ′)

∑
l

ξDil Glj (ξ, t ′)

= G0(t)δi j + ξ

∫ ∞

−∞
dt ′G0(t − t ′)Di j G0(t

′)

+ ξ 2
∫ ∫ ∞

−∞
dt ′ dt ′′∑

i ′
G0(t − t ′)Dii ′ G0(t

′ − t ′′)Di ′ j G0(t
′′)+ · · · . (55)

It is convenient to introduce the time Fourier transform of the Green’s function G(t) (the
indices, as well as the ξ dependence, will be dropped out, as irrelevant for these definitions):

G(t) = 1

2π

∫ +∞

−∞
G(ω)e−iωt dω, G(ω) =

∫ +∞

−∞
G(t)eiωt dω. (56)

In terms of G(ω), the series (55) becomes

Gi j(ξ, ω) = G0(ω)δi j + ξ
∑

l

Dil Gl j (ξ, ω) (57)

= G0(ω)δi j + ξ [G0(ω)]2 Di j + ξ 2[G0(ω)]3
∑

k

Dik Dkj + · · · . (58)

Taking advantage of the translational invariance, assured by the cyclic boundary conditions, we
Fourier transform again G(ω), in the reciprocal lattice space:

Gi j(ω) = 1

N

∑
k

Gk(ω)e
ik(Ri −R j ), Gk(ω) =

∑
i

Gi j(ω)e
−ik(Ri −R j ). (59)

We have a similar relation for D:

Dk =
∑

j

Di j e
−ik(Ri −R j ), Di j =

∑
k

Dkeik(Ri −R j ). (60)

Finally, the Dyson equation (55), written in terms of Gk(ω), becomes a geometric series, with
the sum

Gk(ξ, ω) = G0(ω)

1 − ξG0(ω)Dk
= 1

G0(ω)−1 − ξDk
(61)

where the ξ -dependence of the Green’s function has been explicitly reintroduced. Taking into
consideration the definition (53), the specific form of Dk is

Dk = −2μ cos kd (62)
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with d the lattice constant. We have ([31] ((1.6.9)))

G0(ω)
−1 = ω2 −�2

0 + iη, η > 0 (63)

with �0 the ground state energy of the single anharmonic oscillator. So, with (61), we obtain

Gk(ξ, ω) = [G0(ω)− ξDk]−1 = (ω2 −�2
k + iη)−1 (64)

with the definition

�2
k = �2

0 − 2ξμ cos kd. (65)

Also ([31] ((1.6.11))),

Gk(ξ, t) = − i

2�k
e−i�k |t|. (66)

Finally, (54) becomes

�EG = 1

4

∫ 1

0
dξ
∑

k

Dk

�k
= 1

2

∑
k

(√
�2

0 + Dk −�0

)
(67)

and the ground state energy of (46) is

EG = 1

2

∑
k

�k = N

2π

∫ π

0

√
�2

0 − 2μ cos x dx . (68)

The integral in (68) is proportional to the complete elliptic integral of second kind [32], so

EG = N

π
(�2

0 + 2μ)1/2E

(
2

(
μ

�2
0 + 2μ

)1/2
)
. (69)

The free energy per unit length of the coupled chain system is

f (2D) = 1

β

(
a

c

)1/2 N

π

(
�2

0 + 2μ
)1/2

E

(
2

(
μ

�2
0 + 2μ

)1/2
)
. (70)

This is an exact formula. From here we can obtain the specific heat and the averages of
ψ2 and ψ4. The specific heat is proportional to the second derivative of E(r), which has a
logarithmic singularity for r = 1. This condition means

�2
0 = 2μ = 2c⊥

a′(t − 1)+ 4c⊥
. (71)

The equation (71) determines the critical temperature of the transition. This behaviour of
the specific heat (logarithmic singularity) confirms the inclusion of the system (planar array
of chains) in the Ising universality class. This result was firstly obtained by Lajzerovicz and
Pfeuty [14]. It was also supported by numerical calculations by Stoeckly [33].

For explicit calculations, the expression of �2
0 is needed. Considering, in the first

approximation, according to (27), that

�0 � 3

8
(6λ)1/3 = 3

8

(6mb)1/3

(2ma)1/2
(72)

equation (71) can be written as

f (t) ≡ a′(t − 1)+ 4c⊥
a′ (t − 1)+ 2c⊥

= B
c⊥
t2/3

, B = constant. (73)

The left-hand side of (73) is a monotonically and slowly decreasing function of t , which
takes the value 2 for t = 1; the rhs is a quickly decreasing function of t , which, at t = 1,
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takes the value Bc⊥; as c⊥ is a ‘small parameter’, we can presume Bc⊥ < 1. Their crossing
determines the critical temperature tc; it is smaller than unity and decreases with the interchain
coupling.

In order to be more specific, let us introduce an ‘anisotropy factor’ n, and put, instead
of (41),

c⊥ = 1

n

c

ξ 2
0

= a′

n
. (74)

Equation (73) takes the form

0.092

(
b

βa′2

)2/3

= 1

n

t − 1 + 2
n

t − 1 + 4
n

. (75)

In order to get a numerical value, we have to replace the Ginzburg–Landau parameters
in (75) for a specific substance. ‘The derivation of these coefficients is a subtle matter’ [16],
and their values should be considered mainly estimations, not exact results. We shall use the
estimation of Lee et al [45] for TTF-TCNQ. According to equation (3) of [45],

a′ = D0, b = D0b1 for t � 1 (76)

with D0 the electronic density of states. Reference [45] uses the values

D0

kTc
= 5

2

π

sin 0.15π
� 5.8 × 10−2; b1 = 7ζ(3)

16π2
� 5.3 × 10−2 (77)

with which (75) becomes

t − 1 + 4
n

t − 1 + 2
n

= 500

n
t−2/3. (78)

For n = 10, t = 0.8; for n = 5, t = 0.6. For a 3D TTF-TCNQ sample, [45] gives
T (3D)

c � 1
4 Tc. (Similar estimations give T (3D)

c � 1
3 Tc for KCP— [2] (p 647).) Two dimensional

TTF-TCNQ samples have not been manufactured, so we do not have experimental data for a
planar array of TTF-TCNQ chains, but clearly the effect of the 2D ordering should be weaker
than in the 3D case, so a value of t = 0.6, . . . , 0.8 for an anisotropy factor n = 5, . . . , 10
seems reasonable.

6. Conclusions and comments

In this paper we have applied the Ginzburg–Landau theory to low dimensional (1D and 2D)
systems, taking into account the fluctuations exactly. No anisotropy condition, like (71),
has been used. In this way, our approach goes beyond the ‘single chain approximation’,
currently used in the literature, where the inter-chain fluctuations are treated within the mean
field method. This is the main contribution of our work. Accurate analytic expressions for
the thermodynamic functions describing the 1D and 2D systems have been calculated. The
approximative character of these expressions is entirely due to the approximative character of
the solutions of the Schrödinger equations for the anharmonic oscillator. The specific ansatz
used in this paper (Hsue–Chern approach) is just an option, used in order to illustrate how the
method works. More accurate (or even exact) solutions will produce more accurate (or even
exact) results.

The present work can be easily improved at least in two directions: to replace the Hsue–
Chern solution with a more accurate one; and to apply the method to a system described by a
complex order parameter.
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As already stated, the use of the Hsue–Chern solution for the anharmonic oscillator is just
an option, motivated by the accuracy of this simple approximation. There is, however, a number
of improved versions of the Hsue–Chern approach [34–36]. But there are also some even more
powerful methods, developed in recent years.

Turbiner [37] proposed an extremely fast convergent perturbation theory for the quartic
anharmonic oscillator and the double-well potential. Other interesting approaches (alternative
approximation methods) have been proposed in [18] and [38]. The development of non-
perturbative approaches led to several quasi-exactly solvable models [39, 40]. All these results
could improve the solution of our transfer matrix Hamiltonian for a single chain with real order
parameter.

For the complex order parameter case, the transfer matrix Hamiltonian corresponds to a
2D isotropic anharmonic oscillator, which can be transformed into a Schrödinger equation with
centrifugal term and quartic potential [11, 16]. Its eigenvalues can be evaluated using the results
of Seetharaman and Vasan [41] and [42, 43]. Quasi-exactly solvable models for this potential
have been proposed by Znojil [44]. These results can be used to obtain accurate results for 1D
systems described by complex fields.
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[32] Gradstein I S and Ryzhik I M 1980 Tables of Integrals, Series and Products (New York: Academic)
[33] Stoeckly B 1976 Phys. Rev. B 14 1271
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